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Analysis of an Oval Symmetrically Located Inside a
Rectangular Boundary by Conformal Mapping

B. N. DAS, K. V. SESHAGIRI RAQ, AND A. K. MALLICK

Abstract —This paper describes the analysis of a transmission line
having an oval-shaped center conductor symmetrically placed inside an
outer conductor in the form of a rectangular waveguide. A conformal
transformation is used to calculate the characteristic impedances of oval,
elliptic, circular, and planar conductors. The impedance data of these
structures are presented in the form of charts for different aspect ratios of
the rectangular outer conductor. The charge distribution on the center
conductor is also determined.

I. INTRODUCTION

A few investigations have been carried out on the analysis of
transmission lines having a circular conductor located inside a
metallic square, inside a trough, and between infinite parallel
planes [1]-[3). Tippet found the impedance of a transmission line
consisting of a septum placed inside a structure in the form of a
rectangular waveguide [4]. The analysis of a transmission line
having a conductor of elliptic cross section asymmetrically located
between infinite parallel plates has also been reported recently
[5].

In the present work, analysis based on quasi-static approxima-
tion is presented for the case of a transmission line having an
oval-shaped center conductor located symmetrically inside a con-
ductor with rectangular cross section. The generalized conformal
transformation is therefore limited to the fundamental TEM
mode and can be used to determine the characteristic impedance
of a transmission line having a center conductor in the form of 1)
an ellipse with the principal axes parallel to either boundary of
the rectangular outer conductor, 2) a circle, and 3) a symmetri-
cally oriented septum. -

The parametric equations which describe the oval-shaped
boundary of the center conductor are obtained from a conformal
transformation. The data on the characteristic impedance are
presented in the form of charts, with varying parameters from
which the impedances of all the above structures can be de-
termined. The charge distribution on the center conductor for
various eccentricities is also determined.

II. ANALYSIS

Consider a center conductor with a curved boundary placed
symmetrically inside a conductor of rectangular cross section as
shown in Fig. 1(a). Because the structure is symmetric about the
x axis, the analysis is carried out only for the upper hatched
portion of the structure for which the conformal transformation
can be found. The method of obtaining the conformal transfor-
mation of such a polygon with curved boundaries has been
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Fig. 1. Transmission-line configuration and its conformal representation.

suggested by including an appropriate curve factor in the equa-
tion representing the conformal transformation [6]. The hatched
portion of Fig. 1(a) can therefore be treated as a curvilinear
polygon with vertices at the points 4, B, C, E, F, and G of Fig.
1(a). Using the combination of both Schwarz—Christoffel and
Joukowski transformations, the shaded region of Fig. 1(a) is
transformed into the upper half plane of Fig. 1(b) (¢ plane), leads
to an equation of the form [6]

az C t+ A2 —o?

a1y (- m)

)

Carrying out an integration in terms of elliptic integrals, (1) takes
the form

Z=x+jy=C, )\F(sin"lt(m)—+
1—ma?

1—a?
-F|sin™! \/
1— me? g

where C, C,, A, m, and a are constants

_(-m)

( 1~ mcxz)
and F is the incomplete elliptic integral of the first kind of a
given argument and modulus.

+C, (2)
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Substituting the coordinates of the points 4, B, C, D, E, F,
and G in both planes ( Z and ¢) in (2) and solving the resulting set
of equations, the constants C,, C,, |, 15, A, a, m, a, and b are
found to be related as follows:

avl—ma?

@= [K(g)+V1— ma®AK (m)] (32)
= jaK(g) (3b)

[k"(g)+V1—ma® K (m)]

where K is the complete elliptic integral of the first kind at
modulus m or g, K’ is the associated complete elliptic integral
corresponding to the complementary modulus

b [K(g)+>\v1—ma2K’(m)]
a [K’(g)+>\V1-—ma2K(m)]
AV1—ma? -F(sin™'alm)

(30

@ [K'(g)+ W1=ma K(m)] G
n_ [K(g)—F(sin‘l V1—mao? lg)] (3¢)
a [K’(g)+>\v1—ma2K(m)]

k. [K(g)—F(sin”1 V1— ma? |g)] 30

Vi—me? - F(sin 'ajm)

where k (the compression ratio) =r, /r,.

The curved boundary CDE of Fig. 1(a) ( Z plane) is transformed
into a planar conductor CDE of Fig. 1(b) (¢ plane). For any point
on the curve CDE, ¢ is real and its magnitude is less than a.

The boundary of the conductor is assumed to be in the form of
a generalized oval which is a closed curve symmetric about a pair
of axes and concave toward the center bounding a convex do-

main [7].
This curve satisfies the parametric equations of the form
_ rlF('sin"1t|m) (4a)
F(sin™'ajm)

rn|K(g)-F

sin~! \/—1~—ma2 g
1— me?

y= . (4b)

[K(g)—F(sin-] V1—ma? |g)]

From the computed results, it is found that for the aspect ratio
(b/a) different from unity, (4a) and (4b) represent an ellipse for
the values of & less than 0.99 and they represent oval for the
values of a? greater than 0.99. For a value of aspect ratio equal to
unity, the center conductor retains the shape of the ellipse even
for the values of a up to 0.999.

Depending upon the orientation of the principal axes, the
eccentricities of the generalized ellipse are given by

2
e, 1—~(Q) s, n>n (5a)
n
2
ey = 1—(-’-1), <. (5b)
n

The upper half of Fig. I(b) is transformed into the parallel
plate configuration of Fig. 1(c) (W plane) using the transforma-
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tion [8] . &t
W=u+jv=C3f; +
) \/(1—['2)(0(2—1'2)

=G F(®a?)+C,

where ® =sin"'t/a, and C; and C, are constants.
From a substitution of the coordinates of the points B, C, E,
and F in the r and W planes, the transformation takes the form

(6)

F(® 2 ’ 2
Weut joo— L) LK) 7)
K(a?) K(a?)
with U, and ¥}, shown in Fig. 1(c) given by
Up= (8a)
K'(a?
y= K2 (8b)
K(a?)

III. EVALUATION OF THE CHARACTERISTIC IMPEDANCE

One half of the structure shown in Fig. 1(a) has been
transformed into the parallel plate configuration shown in Fig.
1(c). The width of the parallel plates is 2, and V¥, is the separation
between them. The total capacitance per unit length of the line is
twice that of the parallel plate capacitor of Fig. 1(c) and is

,_4€0€r
C'= o (92)

The characteristic impedance of the transmission line is

, 2307 K'(a)

° e K(o?)'

The dependence of the characteristic impedance on the di-
mensions of the transmission line can be determined from
(3a)-(3f) and (9b). For a given impedance of the line, the
modulus a of the elliptic integrals can be obtained by solving the
transcendental equation (9b). From a knowledge of &, the com-
pression ratio k and the aspect ratio, the value of m can be
obtained from (3f) and (3¢). Knowing m, r, /a and r, /a can then
be obtained from (3d), (3e), and (3f). The remaining constants C,
and C, follow from (3a) and (3b), respectively. The shape of the
conductor depends upon the compression ratio k which is a
function of m and «. It is found from (3f) that the parameter A
depends upon m and «. Thus, the impedance and the conductor
shape depends upon m and a.

Results are presented in Figs. 2 and 3 as constant impedance
contours for the values of b/a equal to 1 and 2, respectively.
From a knowledge of the compression ratio k, e;, or e, can be
found from (5a) and (5b), respectively. ¢, = const, e, = const, or
k =const are straight lines passing through the origin of the
(ry/a—ry/a) plane. The intersection of the straight line for
which e, = e, =0 or k =1 with the constant impedance contours
gives the impedance of 1) conductors having a circular cross
section and 2) the impedances of ovals with identical principal
axes located symmetrically inside a rectangular boundary.

The intersection of straight lines making angles other than 45°
with the r|/a or r,/a axis and constant impedance contours
covers the cases of symmetrically located elliptic conductors and
oval-shaped conductors with unequal principal axes.

(%)

A. Elliptic Conductor

The impedance data for the case of the elliptic conductor with
various eccentricities are presented in Figs. 2 and 3.
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Fig. 2. Variation of impedance of a transmission line as a function of con-
ductor dimensions for b/a =1.
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Fig. 3. Variation of impedance of a transmission line as a function of con-
ductor dimensions for b/a = 2.

B. Septum Inside a Rectangular Boundary

When the compression ratio is either 0 or co, the oval degener-
ates into a straight line parallel to either side of the rectangular
boundary.

For k=0, it is found from (3d)—(3f) and (5b) that

n_ = -
—=0 e;=1 A=0

and

n_ [K(g)—F(sin‘1 V- ma? |g)] (10)
a K'(g) ‘
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Fig. 4. Variation of impedance of a transmission line having a circular inner
conductor inside a square outer conductor as a function of radius (r, = rn=r)
forb/a=1.

The corresponding transformation is given by

- ma2

jal K(g)—F|sin™! / ———
Jja| K(g) PR—

zZ= (11)

K'(g)

For k - o0, it is found from (3d)—(3f) and (5a) that
20 e=1 Ao

a

and
no_ F(sin™'a|m)

a K(m) (12)

The corresponding transformation for this case is found to be
a

K(m) (13)

Both (11) and (13) are of the same form as obtained by Tippet
[l

C. Circular Conductor

7=

F(sin™'t|m).

e;=e,=0 or k=1 corresponds to the case of a circular
conductor symmetrically located inside a rectangular boundary.
By substituting k =1 in (3f) the value of A is found to be

Ao [K(g)—F(sin_] V11— ma? Ig)]
\/l—mazF(sin_lodm) '

By using this value of A in (3a) through (3¢) and (2), the
conformal transformation for the case of a circular conductor is
obtained.

The comparison of impedance data for a circular inner conduc-
tor inside a square outer conductor obtained by the present
method with those published in the literature [1]-[3] is presented
in Fig. 4, and also an additional data for the case of a circular
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Fig. 5. Dependence of the radius (r;=r, =r) of the transmission line with
inner circular conductor as a function of aspect ratio of the outer conductor
for various values of the impedances.
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Fig. 6. Charge distnbution on the center conductor with e; or e, as parame-
ter for b/a =1 and Zy = 51.56 @

inner conductor showing the relation between the radius of the
inner conductor and the aspect ratio of the outer conductor for
different values of the characteristic impedance is presented in
Fig. 5.

IV. CHARGE DISTRIBUTION ON THE CENTER CONDUCTOR
OF THE TRANSMISSION LINE

The charge density on the surface of the center conductor is
given by

(14)

where E, is the normal component of the electric field on the
boundary of the center conductor.
The electric field in the cross section of the transmission line is

given by [9]
dW \*
£-- (%)

where the asterisk denotes a complex conjugate.

Using (2), (7), (14), and (15), the charge distribution on the
center conductor is evaluated for b/a =1, ‘/Z Zy=51.56 2, and
different values of e; and e,. The charge distribution so de-
termined is presented in Fig. 6.

ps=¢€E,

(15)

V. CONCLUSIONS

It has been possible to determine the impedance and charge
distribution for conductors of different shapes placed inside a
conductor with rectangular outer boundary using a common
general formulation. The curves of Fig. 4 reveal good agreement
between the results for a rectangular coaxial line with circular
inner conductor obtained by the present method and those ob-
tained by the other methods [1]-[3). For a specified impedance
level, the shape of the conductor and the corresponding parame-
ters (m, A, &*) can be determined with good accuracy.

The results of the analysis can be used to determine the
dimensions of the center conductor for a desired characteristic
impedance and specified aspect ratio (b/a). For a particular
value of impedance, the form of the center conductor can be an
ellipse, circle, or a septum. The advantage of coaxial lines with
elliptic or circular inner and rectangular outer conductors over
other forms of the lines is that they have a higher breakdown
voltage. The power handling capacity of these lines is therefore
higher.
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