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Short Papers

Analysis of an Oval Symmetrically Located Inside a

Rectangular Boundary by Conformal Mapping

B. N. DAS, K. V. SESHAGIRI RAO, AND A. K. MALLICK

Abstract —This paper deseribes the anafysis of a transmission line

having an oval-sba-&l center conductor syrnmetricafly placed inside an

outer condnctor in the form of a rectangular waveguide. A conformal

transformation is used to calculate the characteristic impedances of oval,

elliptic, circular, and planar conductors. The impedance data of these

structures are presented in the form of charts for different aspect ratios of

the rectangular enter condnctor. The charge distribution on the center

conductor is afso determined.

I. INTRODUCTION

A few investigations have been carried out on the analysis of

transmission lines having a circular conductor located inside a

metallic square, inside a trough, and between infinite parallel

planes [1]–[3]. Tippet found the impedance of a transmission line
consisting of a septum placed inside a structure in the form of a
rectangular waveguide [4]. The analysis of a transmission line
having a conductor of elliptic cross section asymmetrically located
between infinite parallel plates has also been reported recently
[5].

In the present work, analysis based on quasi-static approxima-
tion is presented for the case of a transmission line having an
oval-shaped center conductor located symmetrically inside a con-
ductor with rectangular cross section. The generalized conformal
transformation is therefore limited to the fundamental TEM
mode and can be used to determine the characteristic impedance
of a transmission line having a center conductor in the form of 1)

au ellipse with the principal axes parallel to either boundary of

the rectangular outer conductor, 2) a circle, and 3) a symmetri-

cally oriented septum.

The parametric equations which describe the owd-shaped
boundary of the center conductor are obtained from a conformal
transformation. The data on the characteristic impedance are
presented in the form of charts, with varying parameters from
which the impedances of all the above structures can be de-
termined. The charge distribution on the center conductor for
various eccentricities is also determined.

II. ANALYSIS

Consider a center conductor with a curved boundary placed

symmetrically inside a conductor of rectangular cross section as

shown in Fig. 1(a). Because the structure is symmetric about the

x axis, the analysis is carried out only for the upper hatched

portion of the structure for which the conformal transformation

can be found. The method of obtaining the conformal transfor-

mation of such a polygon with curved boundaries has been
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Fig. 1. Transmission-line configuration and its conformal representation.

suggested by including an appropriate curve factor in the equa-

tion representing the conformal transformation [6]. The hatched

portion of Fig. l(a) can therefore be treated as a curvilinear

polygon with vertices at the points A, B, C, E, F, and G of Fig.

1(a). Using the combination of both Schwarz-Christoffel and

Joukowski transformations, the shaded region of Fig. l(a) is

transformed into the upper half plane of Fig. l(b) (t plane), leads
to an equation of the form [6]

dZ ~ t + Adn—=
dt ‘“

((t’ -a’)(l-t’)(l-nzt’) “

(1)

Carrying out an integration in terms of elliptic integrals, (1) takes

the form

[

Z=x+jy=C1 AF(sin-’tlm)–
d&

(/ l–a’
F sin-’ —

1 – mt2

where Cl, C2, A, m, and a are constants

+ c’ (2)

(l-m)

‘= (1-wra’)

and F is the incomplete elliptic integral of the first kind of a

given argument and ‘moduhm~
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Substituting the coordinates of the points A, B, C, D, E, F,
and Gin both planes (Z and t) in (2) and solving the resulting set

of equations, the constants Cl, C2, rl, r2, A, a, m, a, and b are

found to be related as follows:

ail– ma2
CI= [K,(g) +-~K(M)] (3a)

jaK(g)

C2=[K,(,) +RAK(W)] (3b)

where K is the complete elliptic integral of the first kind at

modulus m or g, K’ is the associated complete elliptic integral

corresponding to the complementary modulus

b [K(g) +A~=K’(m)]

~= [K(g)+ A=K(m)]
(3C)

rl AJ- .F(sin - 1aim).
a = [Kf(g)+XGK(m)]

(3d)

,2 [K(g)-f’(sin-’ ~=lg)]
—

C2 = [K)(g)+~e~(m)]
(3e)

,=, [K(g)-~(sin-’ -[g)] ~3f)

JQF(sin-’a[m)

where k (the compression ratio)= r, /r2.
The curved boundary CDE of Fig. l(a) ( Z plane) is transformed

into a planar conductor CDE of Fig. l(b) (t plane). For any point

on the curve CDE, t is real and its magnitude is less than a.

The boundary of the conductor is assumed to be in the form of

a generalized oval which is a closed curve symmetric about a pair

of axes and concave toward the center bounding a convex do-

main [7].

This curve satisfies the parametric equations of the form

rlF(sin–lt[m)
~=

F(sin- 1aim)
(4a)

r,[K(g)-F[sin-l/~ g)]

‘= [K(g) -F’(sin-l ~zlg)] “ “b)

From the computed results, it is found that for the aspect ratio

(b/a ) different from unity, (4a) and (4b) represent an ellipse for

the values of a2 less than 0.99 and they represent oval for the

values of a2 greater than 0.99. For a value of aspect ratio equal to

unity, the center conductor retains the shape of the ellipse even

for the values of a2 up to 0.999.

Depending upon the orientation of the principal axes, the

eccentricities of the generalized ellipse are given by

(5a)

(5b)

The upper half of Fig. l(b) is transformed into the parallel

plate configuration of Fig. 1(c) (w plane) using the transforma-

tion [8]

J
W=u+jv=C3 ~

dt ‘
+ C4

o /(1- f’’)((x -t”)

=c3F(qa2)+c4 (6)

– I ~,a ~d q ~d C4 are constants.
where 0 = sin ,

From a substitution of the coordinates of the points B, C, E,
and F in the tand W planes, the transformation takes the form

W=u+jv=–
F(Ola2) K’(a2)

+ j—
K(a2) K(a2)

(7)

with U. and V. shown in Fig. l(c) given by

Uo=l (8a)

~ = K’((X2)

0 K(CY2) “
(8b)

III. EVALUATION OF THE CHARACTERISTIC IMPEDANCE

One half of the structure shown in Fig. l(a) has been

transformed into the parallel plate configuration shown in Fig.

1(c). The width of the parallel plates is 2, and VOis the separation

between them. The total capacitance per unit length of the line is

twice that of the parallel plate capacitor of Fig. 1(c) and is

The characteristic impedance of the transmission line is

(9a)

(9b)

The dependence of the characteristic impedance on the di-

mensions of the transmission line can be determined from

(3a) -(3f) and (9b). For a given impedance of the line, the

modulus a of the elliptic integrals can be obtained by solving the

transcendental equation (9b). From a knowledge of a, the com-

pression ratio k and the aspect ratio, the value of m can be

obtained from (38 and (3c). Knowing m, rl /a and r2/a can then

be obtained from (3d), (3e), and (3 f). The remaining constants Cl

and C2 follow from (3a) and (3b), respectively. The shape of the

conductor depends upon the compression ratio k which is a

function of m and a. It is found from (3 f,) that the parameter A

depends upon m and a. Thus, the impedance and the conductor

shape depends upon m and a.

Results are presented in Figs. 2 and 3 as constant impedance

contours for the values of b/a equal to 1 and 2, respectively.

From a knowledge of the compression ratio k, el, or e2 can be

found from (5a) and (5b), respectively. e, = const, e2 = const, or

k = const are straight lines passing through the origin of the

(r, /a – r2/a) plane. The intersection of the straight line for

which e, = e2 = O or k = 1 with the constant impedance contours

gives the impedance of 1) conductors having a circular cross

section and 2) the impedances of ovals with identical principal

axes located symmetrically inside a rectangular boundary.

The intersection of straight lines making angles other than 45°

with the rl /a or r2/a axis and constant impedance contours

covers the cases of symmetrically located elliptic conductors and

oval-shaped conductors with unequal principal axes.

A. Elliptic Conductor

The impedance data for the case of the elliptic conductor with

various eccentricities are presented in Figs. 2 and 3.
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Fig. 2. Variation of impedance of a transmission line as a function of con-
d&tor dimensions for b/a= 1.
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Fig. 3. Variation of impedance of a transmission line as a function of ccrn-
ductor dimensions for b/a= 2.

B. Septum Inside a Rectangular Boundary

When the compression ratio is either Oor m, the oval degener-
ates into a straight line parallel to either side of the rectangular
boundary.

For k = O, it is found from (3d)-(3f) and (5b) that

~=0 ez=l A=O

and

,, [K(g)-F(si.-’ kFii21g)]—.
a K(g)

(lo)
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Fig. 4. Variation of impedance of a transmission line havinx a circular inner
conductor inside a squ&e outer conductor as a function of r~dius ( r, = r2 = r)

for b/a =1.

The corresponding transformation is given by

~=ja[K(g)-F(sk-l/~J ,,,,
K’(g)

For k ~ m, it is found from (3d)-(3f) and (5a) that

and

~ = F(sin-lalrn)

a K(m)
(12)

The corresponding transformation for this case is found to be

—F(sin-’tlm).
‘= K(am)

(13)

Both (11) and (13) are of the same form as obtained by Tippet

[4].

C. Circular Conductor

e, = e2 =.0 or k = 1 corresponds to the case of a circular

conductor symmetrically located inside a rectangular boundary.

By substituting k = 1 in (3f) the value of A is found to be

,= [K(~)-~(sin-’ J-[g)]
Ji=E7F(sin-’(x@) “

By using this value of A in (3a) through (3e) and (2), the

conformal transformation for the case of a circular conductor is

obtained.

The comparison of impedance data for a circular inner conduc-

tor inside a square outer conductor obtained by the present

method with those published in the literature [1 ]–[3] is presented

in Fig. 4, and also an additional data for the case of a circular
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IV. CHARGE DISTRIBUTION ON THE CENTER CONDUCTOR

OF THE TRANSMISSION LINE

The charge density on the surface of the center conductor is

given by

k
--w-.

p~= <En (14)

son where En is the normal component of the electric field on the

boundary of the center conductor.

.60n The electric field in the cross section of the transmission line is

given by [9]

.75n

()

dw *

‘=– z
(15)

.90 n

.120n

.1 - .16on

o I 2 3 4

bla~

Fig. 5. Dependence of the radius (r, = r~ = r) of the transruisslon line with
inner circular conductor as a function of aspect ratio of the outer conductor
for various vahres of the impedances.
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Fig. 6. Charge dmtrrbutlon on the center conductor with e] or ez as pararne-
terforb/a=l and ZO=51.56 0

inner conductor showing the relation between the radius of the

inner conductor and the aspect ratio of the outer conductor for

different values of the characteristic impedance is presented in

Fig. 5.

where the asterisk denotes a complex conjugate.

Using (2), (7), (14), and (15), the charge distribution on the

center conductor is evaluated for b/a =1, fiZO = 51.56 Q, and

different values of el and ez. The charge distribution so de-

termined is presented in Fig. 6.

V. CONCLUSIONS

It has been possible to determine the impedance and charge

distribution for conductors of different shapes placed inside a

conductor with rectangular outer boundary using a common

generaf formulation. The curves of Fig. 4 reveal good agreement

between the results for a rectangular coaxiaf line with circular

inner conductor obtained by the present method and those ob-

tained by the other methods [1 ]–[3]. For a specified impedance

level, the shape of the conductor and the corresponding parame-

ters (m, A, ci2 ) can be determined with good accuracy.

The results of the analysis can be used to determine the

dimensions of the center conductor for a desired characteristic

impedance and specified aspect ratio (b/a). For a particular

value of impedance, the form of the center conductor can be an

ellipse, circle, or a septum. The advantage of coaxiaf lines with

elliptic or circular inner and rectangular outer conductors over

other forms of the lines is that they have a higher breakdown

voltage. The power handling capacity of these lines is therefore

higher.
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